HOSSAM GHANEM

(47) 6.0 Graphs

the graph of the equation

$$x = a$$

Is vertical straight line

Examples:

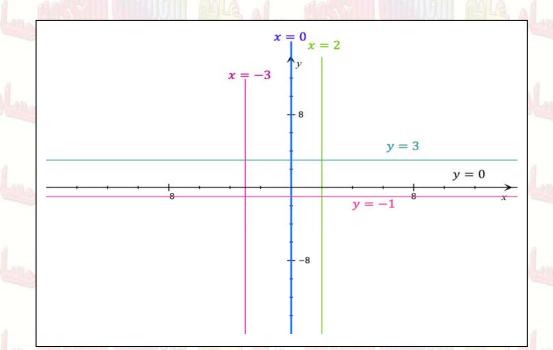
$$x = 0$$

$$x = 2$$

$$x = -3$$

the graph of equation

$$y = a$$

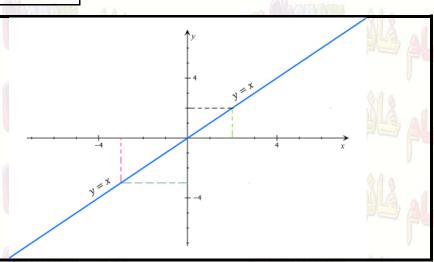

Is horizontal straight line

Examples

$$y = 0$$

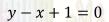
$$y = 3$$

$$v = -1$$

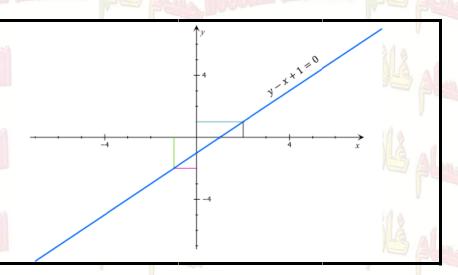

The equation of straight line

$$ax + by + c = 0$$

$$y = x$$


790.11			
x	0	2	-3
y	0	2	-3

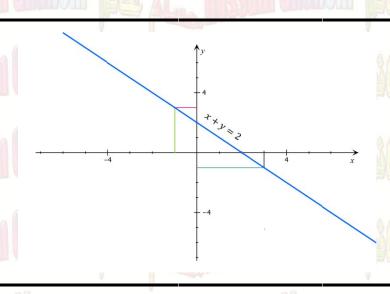
المعادلة من الدرجة الأولى في x, y تمثل مستقيم مائل ويمر بنقطة الأصل إذا لم يتواجد حد ثابت


The equation of straight line

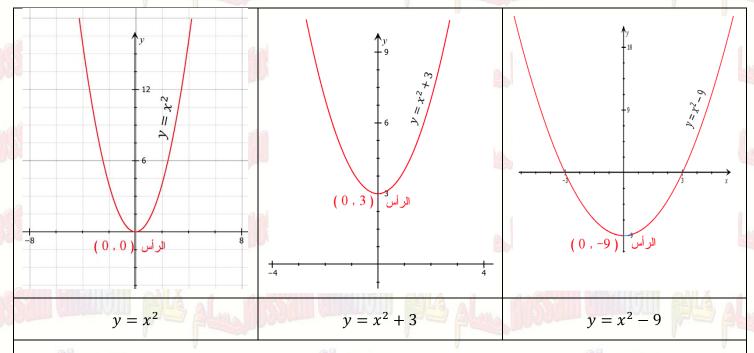
$$ax + by + c = 0$$

х	0	Vi	-1	
y	1	0	-2	

المعادلة من الدرجة الأولى في x, y تمثل مستقيم مائل وميله موجب إذا كان إشارة كل من x, y مختلفتين بشرط أن يكونا في طرف واحد للمعادلة



x + y = 2


х	0	2	-1	
ν	2	0	3	

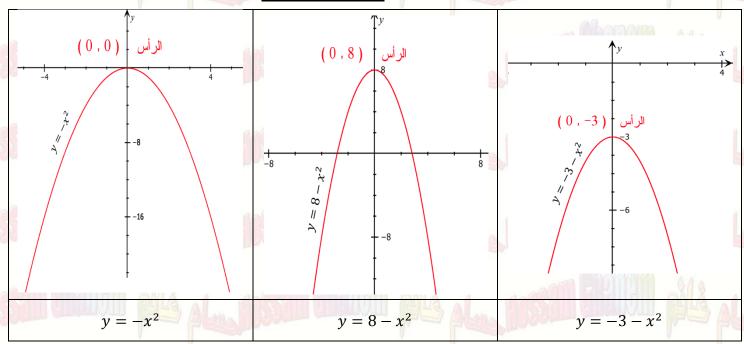
المعادلة من الدرجة الأولى في x,y تمثل مستقيم مائل وميله سالب إذا كان إشارة كل من x,y متشابهتين بشرط أن يكونا في طرف واحد للمعادلة

The equation of Parabola

$$y = ax^2 + b$$

المعادلة من الدرجة الثانية في χ و من الدرجة الأولى في y تمثل Parabola "قطع مكافئ " و من الدرجة الأولى في χ^2 متشابهتين بشرط أن يكون χ^2 في طرف المعادلة و χ^2 في الطرف الأخر رأس المنحنى χ^2 (0, b)

Examples:


$$y = x^2$$

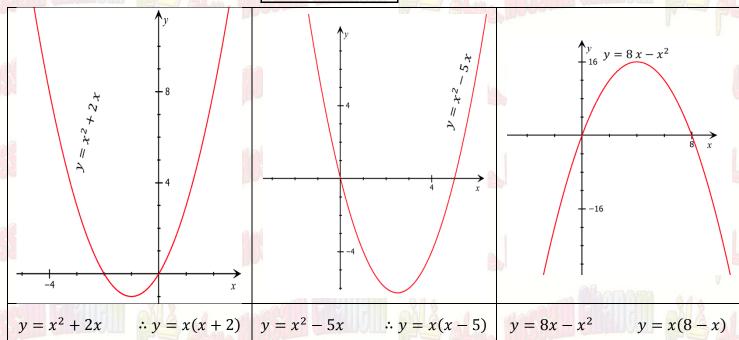
$$y = x^2 + 3$$

$$y = x^2 - 9$$

The equation of Parabola

$$y = b - x^2$$

المعادلة من الدرجة الثانية في x و من الدرجة الأولى في y تمثل Parabola "قطع مكافئ " زراعي المنحنى إلى أسفل إذا كان إشارة كل من χ^2 , χ^2 مختلفتين بشرط أن يكون χ^2 في طرف المعادلة و χ^2 في الطرف الأخر رأس المنحنى (0, b)


Examples:

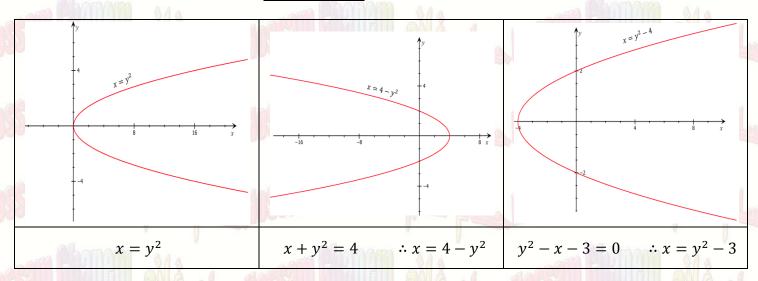
$$y = -x^2$$

$$y = 8 - x^2$$

$$y = -3 - x^2$$
 OR $(y + x^2 + 3 = 0)$

"قطع مكافئ Parabola المعادلة من الدرجة الأولى في y تمثل Parabola "قطع مكافئ المعادلة من الدرجة الأولى المعادلة من الدرجة الأولى المعادلة من الدرجة الأولى المعادلة من الدرجة الأولى المعادلة χ^2 المنحنى يتوقف على إشارة

Examples:

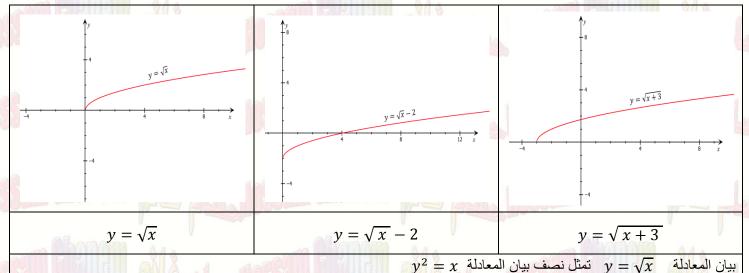

$$y = x^2 + 2x$$

$$y - x^2 + 5x = 0$$

$$y = 8x - x^2$$

The equation of Parabola

$$x = \pm y^2$$

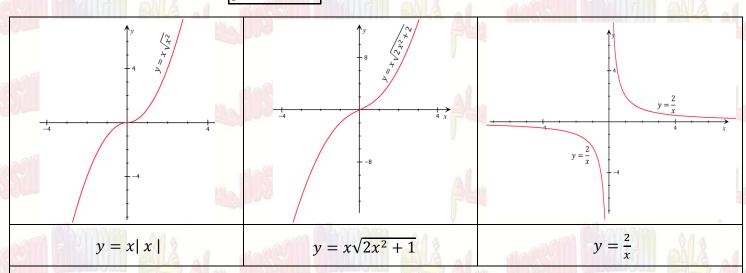


المعادلة من الدرجة الثانية في y و من الدرجة الأولى في x تمثل Parabola "قطع مكافئ " ومن الدرجة الأولى في x^2 , مثل x^2 مثل من x^2 , مثل المنحنى إلى المين إذا كان إشارة كل من x^2 , y مختلفتين بشرط أن يكون x^2 في طرف المعادلة و x في الطرف الأخر زراعي المنحنى إلى اليسار إذا كان إشارة كل من x^2 , x^2 مختلفتين بشرط أن يكون x^2 في طرف المعادلة و x في الطرف الأخر x^2 Examples $x = y^2$ $x + y^2 = 4$

 $y=-\sqrt{x}$ ، $y=\sqrt{x}$ ملاحظة هامة: يمكن اعتبار المعادلة $x=y^2$ أنها تمثل منحنين هما $y=-\sqrt{4-x}$ ، $y=\sqrt{4-x}$ مكذلك $x+y^2=4$ تمثل منحنين هما $y=-\sqrt{x+3}$ ، $y=\sqrt{x+3}$ تمثل منحنين هما $y^2-x-3=0$

The equation

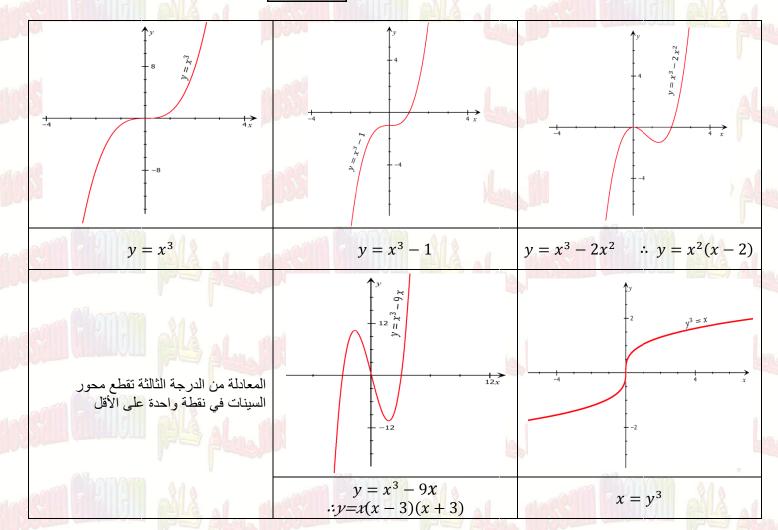
 $y = \sqrt{x}$



Examples $y = \sqrt{x}$ $y = \sqrt{x} - 2$ $y = \sqrt{x + 3}$ $y = -\sqrt{x}$, $y = \sqrt{x}$ has in indicated a function of $y = \sqrt{x}$ and $y = \sqrt{x}$ and y =

 $y = -\sqrt{4 - x}$ ، $y = \sqrt{4 - x}$ ممثل متحنین هما $x + y^2 = 4$ و تمثل متحنین هما $y = -\sqrt{x + 3}$ ، $y = \sqrt{x + 3}$ مثل متحنین هما $y^2 - x - 3 = 0$

The equation


 $y = x_{|X|}$

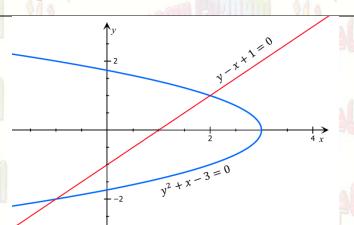
 $y= egin{cases} x^2 & x \geq 0 & \xrightarrow{\text{ADY STRIPS}} & x \geq 0 & \xrightarrow{\text{ADY STRIPS}} & y=x \mid x \mid x \mid 1 \end{cases}$ المعادلة " $y=x \mid x \mid x \mid 1$ قريب من بيان المعادلة $y=x \mid x \mid x \mid 1$ قريب من بيان المعادلة $y=x \mid x \mid x \mid 1$

The equation

The intersection points

$$y - x + 1 = 0 \Rightarrow y = x - 1$$

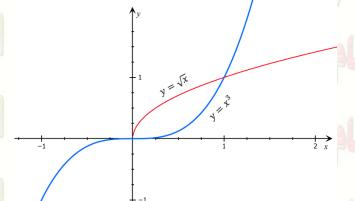
$$y^{2} + x - 3 = 0$$


$$(x - 1)^{2} + x - 3 = 0$$

$$x^{2} - 2x + 1 + x - 3 = 0$$

$$x^{2} - x - 2 = 0$$

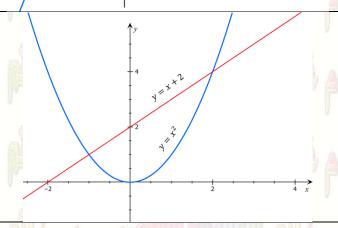
$$(x - 2)(x + 1) = 0$$

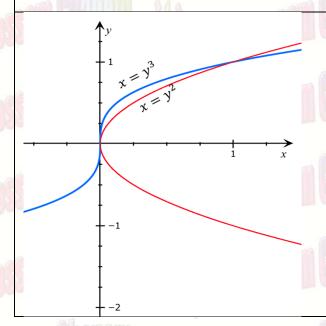

$$x = 2 \text{ or } x = -1$$

$$y = \sqrt{x} \quad \& \ y = x^3$$

$$x^3 = \sqrt{x}$$

$$x = 0$$
 or $x = 1$


$$y = x + 2 & y = x^{2}$$

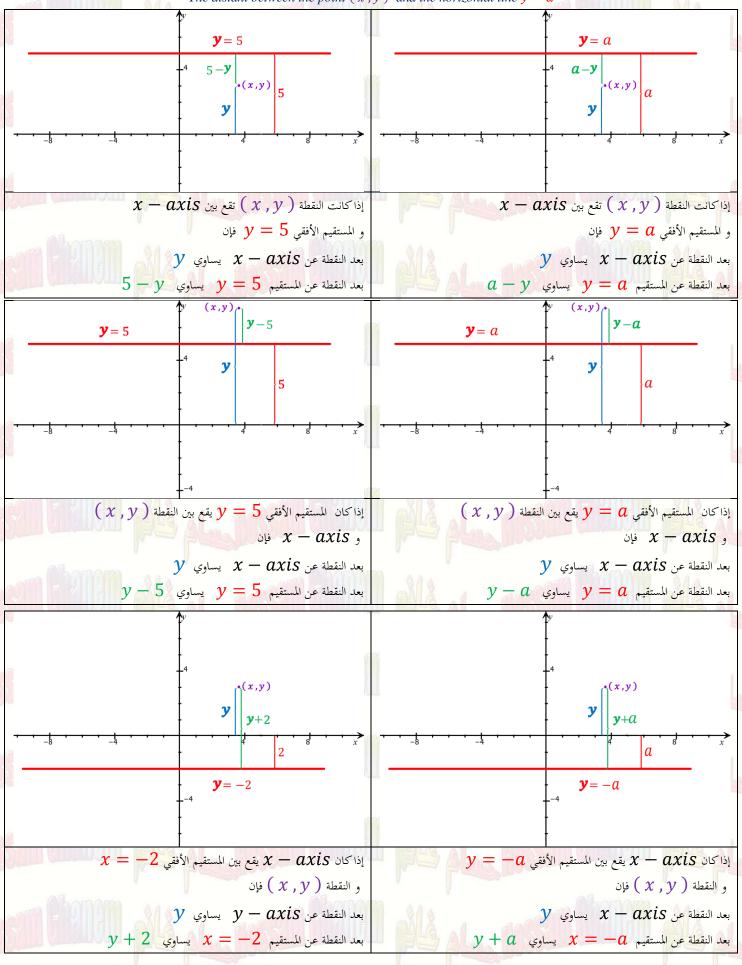

$$x + 2 = x^{2}$$

$$x^{2} - x - 2 = 0$$

$$(x - 2)(x + 1) = 0$$

$$x = 2 \text{ or } x = -1$$

$$x = y^3 \quad \& \quad x = y^2$$


$$y^3 = y^2$$

$$y = 0$$
 or $y = 1$

The distant between the point (x, y) and the vertical line x = a

The distant between the point (x, y) and the horizontal line y = a

